1. <ul id="0c1fb"></ul>

      <noscript id="0c1fb"><video id="0c1fb"></video></noscript>
      <noscript id="0c1fb"><listing id="0c1fb"><thead id="0c1fb"></thead></listing></noscript>

      99热在线精品一区二区三区_国产伦精品一区二区三区女破破_亚洲一区二区三区无码_精品国产欧美日韩另类一区

      RELATEED CONSULTING
      相關咨詢
      選擇下列產(chǎn)品馬上在線溝通
      服務時間:8:30-17:00
      你可能遇到了下面的問題
      關閉右側工具欄

      新聞中心

      這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
      fft的java代碼 fft 代碼

      如何實現(xiàn)64點FFT?越詳細越好!

      matlab實現(xiàn)的代碼:

      成都創(chuàng)新互聯(lián)公司主要從事成都網(wǎng)站設計、網(wǎng)站建設、網(wǎng)頁設計、企業(yè)做網(wǎng)站、公司建網(wǎng)站等業(yè)務。立足成都服務上黨,十年網(wǎng)站建設經(jīng)驗,價格優(yōu)惠、服務專業(yè),歡迎來電咨詢建站服務:13518219792

      x=importdata('aa.txt') %從aa.txt文件中讀取數(shù)據(jù),64點FFT就取64點數(shù)據(jù)

      n=[1:64]; %64個數(shù)據(jù)

      N=64;

      y=fft(x); %進行FFT計算

      %輸出y

      M=abs(y); %取幅值

      M(1)=M(1)/2;

      plot(n,2*M/N); %繪制幅頻圖,

      title('幅頻相應');

      xlabel('頻率');

      ylabel('幅度');

      如果要單片機實現(xiàn)的話,cortex及ARM有相應的庫函數(shù),但是要注意采樣率,采樣周期與信號周期的關系,頻譜泄露的影響。

      java中如何對arm音頻文件進行FFT轉(zhuǎn)換?

      首先要先把arm音頻解碼后,分幀處理(如128個樣點),然后用fft函數(shù)就可以了。

      我想問一下 java 中沒有有Complex 這個變量,是需要自己定義嗎?可是我看有些代碼是直接用的。代碼如下

      從你的問題描述看你是問是否有一個復數(shù)類型complex,我查了一下沒有,都是自己定義的。下面的代碼你可以參考:

      /******************************************************************************

      *??Compilation:??javac?Complex.java

      *??Execution:????java?Complex

      *

      *??Data?type?for?complex?numbers.

      *

      *??The?data?type?is?"immutable"?so?once?you?create?and?initialize

      *??a?Complex?object,?you?cannot?change?it.?The?"final"?keyword

      *??when?declaring?re?and?im?enforces?this?rule,?making?it?a

      *??compile-time?error?to?change?the?.re?or?.im?instance?variables?after

      *??they've?been?initialized.

      *

      *??%?java?Complex

      *??a????????????=?5.0?+?6.0i

      *??b????????????=?-3.0?+?4.0i

      *??Re(a)????????=?5.0

      *??Im(a)????????=?6.0

      *??b?+?a????????=?2.0?+?10.0i

      *??a?-?b????????=?8.0?+?2.0i

      *??a?*?b????????=?-39.0?+?2.0i

      *??b?*?a????????=?-39.0?+?2.0i

      *??a?/?b????????=?0.36?-?1.52i

      *??(a?/?b)?*?b??=?5.0?+?6.0i

      *??conj(a)??????=?5.0?-?6.0i

      *??|a|??????????=?7.810249675906654

      *??tan(a)???????=?-6.685231390246571E-6?+?1.0000103108981198i

      *

      ******************************************************************************/

      import?java.util.Objects;

      public?class?Complex?{

      private?final?double?re;???//?the?real?part

      private?final?double?im;???//?the?imaginary?part

      //?create?a?new?object?with?the?given?real?and?imaginary?parts

      public?Complex(double?real,?double?imag)?{

      re?=?real;

      im?=?imag;

      }

      //?return?a?string?representation?of?the?invoking?Complex?object

      public?String?toString()?{

      if?(im?==?0)?return?re?+?"";

      if?(re?==?0)?return?im?+?"i";

      if?(im???0)?return?re?+?"?-?"?+?(-im)?+?"i";

      return?re?+?"?+?"?+?im?+?"i";

      }

      //?return?abs/modulus/magnitude

      public?double?abs()?{

      return?Math.hypot(re,?im);

      }

      //?return?angle/phase/argument,?normalized?to?be?between?-pi?and?pi

      public?double?phase()?{

      return?Math.atan2(im,?re);

      }

      //?return?a?new?Complex?object?whose?value?is?(this?+?b)

      public?Complex?plus(Complex?b)?{

      Complex?a?=?this;?????????????//?invoking?object

      double?real?=?a.re?+?b.re;

      double?imag?=?a.im?+?b.im;

      return?new?Complex(real,?imag);

      }

      //?return?a?new?Complex?object?whose?value?is?(this?-?b)

      public?Complex?minus(Complex?b)?{

      Complex?a?=?this;

      double?real?=?a.re?-?b.re;

      double?imag?=?a.im?-?b.im;

      return?new?Complex(real,?imag);

      }

      //?return?a?new?Complex?object?whose?value?is?(this?*?b)

      public?Complex?times(Complex?b)?{

      Complex?a?=?this;

      double?real?=?a.re?*?b.re?-?a.im?*?b.im;

      double?imag?=?a.re?*?b.im?+?a.im?*?b.re;

      return?new?Complex(real,?imag);

      }

      //?return?a?new?object?whose?value?is?(this?*?alpha)

      public?Complex?scale(double?alpha)?{

      return?new?Complex(alpha?*?re,?alpha?*?im);

      }

      //?return?a?new?Complex?object?whose?value?is?the?conjugate?of?this

      public?Complex?conjugate()?{

      return?new?Complex(re,?-im);

      }

      //?return?a?new?Complex?object?whose?value?is?the?reciprocal?of?this

      public?Complex?reciprocal()?{

      double?scale?=?re*re?+?im*im;

      return?new?Complex(re?/?scale,?-im?/?scale);

      }

      //?return?the?real?or?imaginary?part

      public?double?re()?{?return?re;?}

      public?double?im()?{?return?im;?}

      //?return?a?/?b

      public?Complex?divides(Complex?b)?{

      Complex?a?=?this;

      return?a.times(b.reciprocal());

      }

      //?return?a?new?Complex?object?whose?value?is?the?complex?exponential?of?this

      public?Complex?exp()?{

      return?new?Complex(Math.exp(re)?*?Math.cos(im),?Math.exp(re)?*?Math.sin(im));

      }

      //?return?a?new?Complex?object?whose?value?is?the?complex?sine?of?this

      public?Complex?sin()?{

      return?new?Complex(Math.sin(re)?*?Math.cosh(im),?Math.cos(re)?*?Math.sinh(im));

      }

      //?return?a?new?Complex?object?whose?value?is?the?complex?cosine?of?this

      public?Complex?cos()?{

      return?new?Complex(Math.cos(re)?*?Math.cosh(im),?-Math.sin(re)?*?Math.sinh(im));

      }

      //?return?a?new?Complex?object?whose?value?is?the?complex?tangent?of?this

      public?Complex?tan()?{

      return?sin().divides(cos());

      }

      //?a?static?version?of?plus

      public?static?Complex?plus(Complex?a,?Complex?b)?{

      double?real?=?a.re?+?b.re;

      double?imag?=?a.im?+?b.im;

      Complex?sum?=?new?Complex(real,?imag);

      return?sum;

      }

      //?See?Section?3.3.

      public?boolean?equals(Object?x)?{

      if?(x?==?null)?return?false;

      if?(this.getClass()?!=?x.getClass())?return?false;

      Complex?that?=?(Complex)?x;

      return?(this.re?==?that.re)??(this.im?==?that.im);

      }

      //?See?Section?3.3.

      public?int?hashCode()?{

      return?Objects.hash(re,?im);

      }

      //?sample?client?for?testing

      public?static?void?main(String[]?args)?{

      Complex?a?=?new?Complex(5.0,?6.0);

      Complex?b?=?new?Complex(-3.0,?4.0);

      StdOut.println("a????????????=?"?+?a);

      StdOut.println("b????????????=?"?+?b);

      StdOut.println("Re(a)????????=?"?+?a.re());

      StdOut.println("Im(a)????????=?"?+?a.im());

      StdOut.println("b?+?a????????=?"?+?b.plus(a));

      StdOut.println("a?-?b????????=?"?+?a.minus(b));

      StdOut.println("a?*?b????????=?"?+?a.times(b));

      StdOut.println("b?*?a????????=?"?+?b.times(a));

      StdOut.println("a?/?b????????=?"?+?a.divides(b));

      StdOut.println("(a?/?b)?*?b??=?"?+?a.divides(b).times(b));

      StdOut.println("conj(a)??????=?"?+?a.conjugate());

      StdOut.println("|a|??????????=?"?+?a.abs());

      StdOut.println("tan(a)???????=?"?+?a.tan());

      }

      }

      FFT的公式是什么和算法是怎樣實現(xiàn)

      二維FFT相當于對行和列分別進行一維FFT運算。具體的實現(xiàn)辦法如下:

      先對各行逐一進行一維FFT,然后再對變換后的新矩陣的各列逐一進行一維FFT。相應的偽代碼如下所示:

      for (int i=0; iM; i++)

      FFT_1D(ROW[i],N);

      for (int j=0; jN; j++)

      FFT_1D(COL[j],M);

      其中,ROW[i]表示矩陣的第i行。注意這只是一個簡單的記法,并不能完全照抄。還需要通過一些語句來生成各行的數(shù)據(jù)。同理,COL[i]是對矩陣的第i列的一種簡單表示方法。

      所以,關鍵是一維FFT算法的實現(xiàn)。下面討論一維FFT的算法原理。

      【1D-FFT的算法實現(xiàn)】

      設序列h(n)長度為N,將其按下標的奇偶性分成兩組,即he和ho序列,它們的長度都是N/2。這樣,可以將h(n)的FFT計算公式改寫如下 :

      (A)

      由于

      所以,(A)式可以改寫成下面的形式:

      按照FFT的定義,上面的式子實際上是:

      其中,k的取值范圍是 0~N-1。

      我們注意到He(k)和Ho(k)是N/2點的DFT,其周期是N/2。因此,H(k)DFT的前N/2點和后N/2點都可以用He(k)和Ho(k)來表示


      文章標題:fft的java代碼 fft 代碼
      文章URL:http://ef60e0e.cn/article/ddjegci.html
      99热在线精品一区二区三区_国产伦精品一区二区三区女破破_亚洲一区二区三区无码_精品国产欧美日韩另类一区
      1. <ul id="0c1fb"></ul>

        <noscript id="0c1fb"><video id="0c1fb"></video></noscript>
        <noscript id="0c1fb"><listing id="0c1fb"><thead id="0c1fb"></thead></listing></noscript>

        邯郸县| 东明县| 云霄县| 江川县| 达州市| 石林| 五华县| 定州市| 汕头市| 饶平县| 盘山县| 葫芦岛市| 贵州省| 黔南| 南京市| 瑞丽市| 石门县| 福鼎市| 两当县| 隆安县| 兴城市| 江川县| 和静县| 上饶市| 保康县| 宜城市| 宁国市| 布尔津县| 龙江县| 阳高县| 泊头市| 北流市| 宿州市| 曲水县| 新竹市| 资兴市| 佛教| 哈密市| 玉林市| 沙河市| 大丰市|