新聞中心
這篇文章將為大家詳細(xì)講解有關(guān)opencv3/C++實(shí)現(xiàn)FLANN特征匹配的示例分析,小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,希望大家閱讀完這篇文章后可以有所收獲。
公司主營業(yè)務(wù):成都做網(wǎng)站、網(wǎng)站建設(shè)、移動網(wǎng)站開發(fā)等業(yè)務(wù)。幫助企業(yè)客戶真正實(shí)現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。創(chuàng)新互聯(lián)建站是一支青春激揚(yáng)、勤奮敬業(yè)、活力青春激揚(yáng)、勤奮敬業(yè)、活力澎湃、和諧高效的團(tuán)隊(duì)。公司秉承以“開放、自由、嚴(yán)謹(jǐn)、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領(lǐng)域給我們帶來的挑戰(zhàn),讓我們激情的團(tuán)隊(duì)有機(jī)會用頭腦與智慧不斷的給客戶帶來驚喜。創(chuàng)新互聯(lián)建站推出項(xiàng)城免費(fèi)做網(wǎng)站回饋大家。
使用函數(shù)detectAndCompute()檢測關(guān)鍵點(diǎn)并計(jì)算描述符
函數(shù)detectAndCompute()參數(shù)說明:
void detectAndCompute( InputArray image, //圖像 InputArray mask, //掩模 CV_OUT std::vector& keypoints,//輸出關(guān)鍵點(diǎn)的集合 OutputArray descriptors,//計(jì)算描述符(descriptors[i]是為keypoints[i]的計(jì)算描述符) bool useProvidedKeypoints=false //使用提供的關(guān)鍵點(diǎn) );
match()從查詢集中查找每個(gè)描述符的最佳匹配。
參數(shù)說明:
void match( InputArray queryDescriptors, //查詢描述符集 InputArray trainDescriptors, //訓(xùn)練描述符集合 CV_OUT std::vector& matches, //匹配 InputArray mask=noArray() //指定輸入查詢和描述符的列表矩陣之間的允許匹配的掩碼 ) const;
FLANN特征匹配示例:
#include#include using namespace cv; using namespace cv::xfeatures2d; //FLANN對高維數(shù)據(jù)較快 int main() { Mat src1,src2; src1 = imread("E:/image/image/card2.jpg"); src2 = imread("E:/image/image/cards.jpg"); if (src1.empty() || src2.empty()) { printf("can ont load images....\n"); return -1; } imshow("image1", src1); imshow("image2", src2); int minHessian = 400; //選擇SURF特征 Ptr detector = SURF::create(minHessian); std::vector keypoints1; std::vector keypoints2; Mat descriptor1, descriptor2; //檢測關(guān)鍵點(diǎn)并計(jì)算描述符 detector->detectAndCompute(src1, Mat(), keypoints1, descriptor1); detector->detectAndCompute(src2, Mat(), keypoints2, descriptor2); //基于Flann的描述符匹配器 FlannBasedMatcher matcher; std::vector matches; //從查詢集中查找每個(gè)描述符的最佳匹配 matcher.match(descriptor1, descriptor2, matches); double minDist = 1000; double maxDist = 0; for (int i = 0; i < descriptor1.rows; i++) { double dist = matches[i].distance; printf("%f \n", dist); if (dist > maxDist) { maxDist = dist; } if (dist < minDist) { minDist = dist; } } //DMatch類用于匹配關(guān)鍵點(diǎn)描述符的 std::vector goodMatches; for (int i = 0; i < descriptor1.rows; i++) { double dist = matches[i].distance; if (dist < max(2.5*minDist, 0.02)) { goodMatches.push_back(matches[i]); } } Mat matchesImg; drawMatches(src1, keypoints1, src2, keypoints2, goodMatches, matchesImg, Scalar::all(-1), Scalar::all(-1), std::vector (), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("output", matchesImg); waitKey(); return 0; }
關(guān)于“opencv3/C++實(shí)現(xiàn)FLANN特征匹配的示例分析”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學(xué)到更多知識,如果覺得文章不錯(cuò),請把它分享出去讓更多的人看到。
分享文章:opencv3/C++實(shí)現(xiàn)FLANN特征匹配的示例分析
分享地址:http://ef60e0e.cn/article/gedjpc.html