新聞中心
這篇文章給大家分享的是有關(guān)Spark如何編譯的內(nèi)容。小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過來看看吧。
創(chuàng)新互聯(lián)成立與2013年,先為漳平等服務(wù)建站,漳平等地企業(yè),進(jìn)行企業(yè)商務(wù)咨詢服務(wù)。為漳平企業(yè)網(wǎng)站制作PC+手機(jī)+微官網(wǎng)三網(wǎng)同步一站式服務(wù)解決您的所有建站問題。
1.編譯環(huán)境
CentOS6.6 JDK1.7.0_80 Maven3.2.5
2.下載Spark源代碼并解壓
[yyl@vmnode ~]$ pwd /home/yyl [yyl@vmnode make]$ pwd /home/yyl/make [yyl@vmnode make]$ wget http://mirrors.cnnic.cn/apache/spark/spark-1.5.0/spark-1.5.0.tgz [yyl@vmnode make]$ tar -zxf spark-1.5.0.tgz
3.編譯
解壓后的源碼包的根目錄下有個(gè) pom.xml 文件,這個(gè)文件就是使用 Maven 編譯 Spark 的腳步文件。
OK,現(xiàn)在開始編譯:
[yyl@vmnode spark-1.5.0]$ pwd /home/yyl/make/spark-1.5.0 [yyl@vmnode spark-1.5.0]$ export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m" [yyl@vmnode spark-1.5.0]$ mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean package
編譯過程中報(bào)錯(cuò):
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-enforcer-plugin:1.4:enforce (enforce-versions) on project spark-parent_2.10: Some Enforcer rules have failed. Look above for specific messages explaining why the rule failed. -> [Help 1] [ERROR] [ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch. [ERROR] Re-run Maven using the -X switch to enable full debug logging. [ERROR] [ERROR] For more information about the errors and possible solutions, please read the following articles: [ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
這個(gè)錯(cuò)誤有兩個(gè)解決辦法:一是編譯時(shí)加入 -Denforcer.skip=true 參數(shù);二是修改 pom.xml 文件中 properties 定義的變量的值為實(shí)際環(huán)境中 maven 、java 的版本
[yyl@vmnode spark-1.5.0]$ vim pom.xml1.7 3.2.5
解決上面的錯(cuò)誤后重新編譯,結(jié)果又報(bào)錯(cuò):
[INFO] ------------------------------------------------------------------------ [INFO] Reactor Summary: [INFO] [INFO] Spark Project Parent POM ........................... SUCCESS [ 4.619 s] [INFO] Spark Project Launcher ............................. SUCCESS [ 11.669 s] [INFO] Spark Project Networking ........................... SUCCESS [ 11.537 s] [INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [ 6.245 s] [INFO] Spark Project Unsafe ............................... SUCCESS [ 17.217 s] [INFO] Spark Project Core ................................. SUCCESS [04:15 min] [INFO] Spark Project Bagel ................................ SUCCESS [ 22.739 s] [INFO] Spark Project GraphX ............................... SUCCESS [01:09 min] [INFO] Spark Project Streaming ............................ SUCCESS [02:04 min] [INFO] Spark Project Catalyst ............................. SUCCESS [02:43 min] [INFO] Spark Project SQL .................................. SKIPPED ...... --------------------------------------------------- java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.codehaus.plexus.classworlds.launcher.Launcher.launchEnhanced(Launcher.java:289) at org.codehaus.plexus.classworlds.launcher.Launcher.launch(Launcher.java:229) at org.codehaus.plexus.classworlds.launcher.Launcher.mainWithExitCode(Launcher.java:415) at org.codehaus.plexus.classworlds.launcher.Launcher.main(Launcher.java:356) Caused by: scala.reflect.internal.Types$TypeError: bad symbolic reference. A signature in WebUI.class refers to term servlet in value org.jetty which is not available. It may be completely missing from the current classpath, or the version on the classpath might be incompatible with the version used when compiling WebUI.class. at scala.reflect.internal.pickling.UnPickler$Scan.toTypeError(UnPickler.scala:847) at scala.reflect.internal.pickling.UnPickler$Scan$LazyTypeRef.complete(UnPickler.scala:854) at scala.reflect.internal.pickling.UnPickler$Scan$LazyTypeRef.load(UnPickler.scala:863) at scala.reflect.internal.Symbols$Symbol.typeParams(Symbols.scala:1489) ......
這是什么原因呢,查看Spark1.5官方編譯文檔,有這么一句話:
Building Spark using Maven requires Maven 3.3.3 or newer and Java 7+. The Spark build can supply a suitable Maven binary; see below.果斷升級(jí) maven 到3.3.3,再次編譯,OK,編譯成功!
如果你想要編譯兼容 Scala2.11.x 的 Spark,則使用如下命令編譯(默認(rèn)兼容 Scala2.10.x):
[yyl@vmnode spark-1.5.0]$ ./dev/change-scala-version.sh 2.11 [yyl@vmnode spark-1.5.0]$ mvn -Pyarn -Phadoop-2.4 -Dscala-2.11 -DskipTests clean package
編譯支持 Hive 和 JDBC 的 Spark
[yyl@vmnode spark-1.5.0]$ mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver -DskipTests clean package
4. 生成部署包
源碼包的根目錄下有個(gè) make-distribution.sh 腳本,這個(gè)腳本可以打包Spark的發(fā)行包,make-distribution.sh 文件其實(shí)就是調(diào)用了 Maven 進(jìn)行編譯,可以通過下面的命令運(yùn)行:
[yyl@vmnode spark-1.5.0]$ ./make-distribution.sh --tgz -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -Phive -Phive-thriftserver
make-distribution.sh的語法:./make-distribution.sh [--name] [--tgz] [--mvn
--tgz :在根目錄下生成 spark-$VERSION-bin.tgz ,不加此參數(shù)時(shí)不生成 tgz 文件,只生成 /dist 目錄
--name NAME :和 tgz 結(jié)合可以生成 spark-$VERSION-bin-$NAME.tgz 的部署包,不加此參數(shù)時(shí) NAME 為 hadoop 的版本號(hào)
--with-tachyon :是否支持內(nèi)存文件系統(tǒng) Tachyon ,不加此參數(shù)時(shí)不支持 tachyon
PS:編譯時(shí)如何指定 Hadoop 版本
例如,Spark要讀取的是 Hadoop2.5.2 上的文件,使用 maven 該如何編譯呢?答案是:mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.5.2 -Phive -Phive-thriftserver -DskipTests clean package
具體請(qǐng)看官網(wǎng)說明:
另外,如若遇到官方編譯文件不兼容的新的 Hadoop 版本,只能是自行修改 pom.xml 文件,添加新版本的支持,例如添加:
感謝各位的閱讀!關(guān)于“Spark如何編譯”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!
分享題目:Spark如何編譯
網(wǎng)站路徑:http://ef60e0e.cn/article/gsjjii.html